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Abstract

We propose a new regularization method called Loco-Spline for nonpara-

metric function estimation. Loco-Spline uses a penalty which is data driven

and locally adaptive. This allows for more flexible estimation of the function

in regions of the domain where it has more curvature, without over fitting in

regions that have little curvature. This methodology is also transferred into

higher dimensions via the Smoothing Spline ANOVA framework. General con-

ditions for optimal MSE rate of convergence are given and the Loco-Spline is

shown to achieve this rate. In our simulation study, the Loco-Spline substan-

tially outperforms the traditional smoothing spline and the locally adaptive

kernel smoother. Code to fit Loco-Spline models is included with the Supple-

mental Materials for this article which are available online.
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1 Introduction

Nonparametric Regression is a very useful approach to a large list of modern problems

such as computer models, image data, environmental processes, to name a few. The

nonparametric regression model is given by
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yi = f0(xi) + εi i = 1, . . . , n,

where f0 is an unknown regression function and εi are independent error terms.

Smoothing splines are among the most popular methods for estimation of f0 due to

their good empirical performance and sound theoretical support (Cox 1983, Speck-

man 1985, Eubank 1999, van de Geer 2000, and many others). It is usually assumed

without loss of generality that the domain of f0 is [0, 1]. Let f (m) denote the mth

derivative of f . The smoothing spline estimate f̂ is the unique minimizer of

n∑
i=1

(yi − f(xi))
2 + λ

∫ 1

0

(
f (m)(x)

)2
dx (1)

over all functions, f , in mth order Sobolev space,

Sm = {f : f (j) is absolutely continuous for j = 1, . . . ,m− 1 and f (m) ∈ L2}.

Notice that the penalty term on the right of (1) is an overall measure of the roughness

of the function over the domain. The tuning parameter λ controls the trade-off in

the resulting estimate between smoothness and fidelity to the data; large values of λ

will result in smoother functions while smaller values of λ result in rougher functions

but with better agreement to the data. Generally λ is chosen by generalized cross

validation (GCV) (Craven & Wahba 1979), m-fold CV (Kohavi 1995), or related

methods.

In many cases the underlying function changes more abruptly in some regions

than in others. For example in structural engineering equations a beam may vibrate

rapidly after a force is applied but the motion eventually becomes very smooth as

it dies out. In situations like this the global penalty will cause the smoothing spline

estimator to either over-smooth in some regions and/or under-smooth in others.

This paper considers the use of a locally varying smoothing parameter, λ(x), which

is a data driven function of x. This approach allows for more flexible estimation of

the function in areas of the domain where the initial estimate has a large amount of
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curvature. This can be a large advantage when estimating functions that are very

smooth in some areas, but have sharp peaks or abrupt changes in other parts of the

domain.

The use of a local smoothing parameter is popular in kernel and local linear

regression methods (Fan & Gijbels 1996). A major disadvantage to the use of kernel

regression type methods is that these techniques do not translate well to estimation of

functions with many predictors because of the well known ”curse of dimensionality”.

Smoothing spline type optimizations on the other hand can work very well in the

case of multidimensional predictors via the Smoothing Spline ANOVA (SS-ANOVA)

framework (Wahba 1990, Lin 2000, Gu 2002). Hence there is much advantage to be

gained from a locally adaptive smoothing spline type estimator.

There are also many approaches to surface fitting using spatially adaptive knot

placement (basis function selection) with regression splines; see Friedman & Silver-

man (1989), Stone, Hansen, Kooperberg & Truong (1997), Luo & Wahba (1997),

and Hansen & Kooperberg (2002). However, the properties of these estimators are

difficult to study analytically since they are the result of an algorithm and not an

explicit solution to an optimization problem. In addition, the stepwise nature of the

algorithms can lead to instability of the final estimate. Lee (2004) is closer in spirit

to the approach we take here. He calculates several smoothing spline estimates of

varying smoothness, then chooses which of these estimates to use locally based on

minimizing the local risk. This seems to work quite well at design points, but it is

unclear how to define the estimator over the entire domain. When only a small to

moderate number of observations are available or with multiple predictors this will

become a significant problem.

Ruppert & Carroll (2000) use a penalization which is also similar in concept to

our proposed method, but they restrict the estimate to a spline basis, making it

more difficult to study convergence properties for a general space of functions. They

3



impose a penalty on each of coefficients in the spline basis and allow the log of

this penalty to vary as a linear spline. This requires the specification of M tuning

parameters, (α∗1, . . . , α
∗
M), one for each coefficient of the linear spline. This may be

feasible for simple cases, but this approach suffers from the curse of dimensionality in

higher dimensional predictor space. With only two predictors allowing for two way

interaction would already require specification of M2 different smoothing parameters.

This will become computationally infeasible quite quickly as the number of predictors

is increased.

Here we consider spatially adaptive estimators which are defined by the explicit

function minimization problem,

arg min
f∈Sm

n∑
i=1

(yi − f(xi))
2 +

∫ 1

0

λ(x)
(
f (m)(x)

)2
dx. (2)

This formulation allows for the smoothing parameter to vary adaptively with x allow-

ing for more/less penalty in regions of the domain where it is beneficial. Although the

estimator in (2) is very flexible and intuitively appealing, it’s implementation is very

challenging without some simplifying assumptions on λ(x). Pintore, Speckman &

Holmes (2006) use a piecewise constant function for λ(x) in (2). However, this form

of λ(x) has the same drawback as the penalty used in Ruppert & Carroll (2000).

Namely, it requires specifying the number of knots, the knot locations, and the values

of λ(x) in-between the knot locations. This was accomplished by selecting one of

several candidate knot location options and λ values between the knots via GCV .

Unfortunately this leads to a smoothing method with a large number of smoothing

parameters whose values need to be selected. Hence this approach also becomes cost

prohibitive in higher dimensional predictor space. In addition, it may not be reason-

able to assume that the smoothness of the function is very similar in-between knots,

then changes abruptly at the knots. A continuously varying penalty would be more

appropriate in most cases.
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The contribution of this paper is the practical extension and the analysis of the

theoretical properties of an idea proposed in Abramovich & Steinberg (1996). They

proposed that the local smoothing parameter λ(x) be chosen based on an initial

estimate of the mth derivative f
(m)
0 . Unlike all previous attempts at locally adaptive

spline smoothing, this framework requires only one smoothing parameter be chosen

by cross validation.

Here we extend this concept, which we call Loco-Spline, to multiple predictors via

SS-ANOVA. This is done with the same computational efficiency of the traditional

smoothing spline procedure. Our numerical examples demonstrate a favorable per-

formance of the Loco-Spline against several existing methods. In addition, we present

general conditions for a local penalty function λ(x) under which f̂ converges at the

optimal rate for nonparametric estimators. Thus, the added flexibility of Loco-Spline

results in no loss of asymptotic optimality. To the best of our knowledge, this is the

first result of its kind for any spatially adaptive spline type estimators.

The rest of the paper is laid out as follows. In Section 2 we present the Loco-Spline

estimator in the univariate case. Section 2.2 then generalizes to higher dimensions

via the SS-ANOVA framework. Theoretical properties for locally adaptive smoothing

splines are given in Section 3. Section 4 discusses the computational considerations

of Loco-Spline. Section 5 presents the results of applying the proposed methodology

to several example problems and Section 6 concludes the paper.

2 Loco-Spline

We begin by introducing a special form of the Loco-Spline estimation problem for a

univariate predictor, x, which has a motivating intuitive appeal. We then generalize

this problem to the SS-ANOVA framework in Section 2.2.
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2.1 Scatterplot Smoothing

Abramovich & Steinberg (1996) consider the solution to the minimization problem

arg min
f∈Sm

n∑
i=1

(yi − f(xi))
2 + τ

∫ 1

0

(
f (m)(x)

f̃ (m)(x)

)2

dx (3)

over f ∈ Sm where τ > 0 is a smoothing parameter and f̃ (m) is an initial estimate

of the mth derivative of f0. Notice that the contribution to the penalty in (3) is

small in regions where the initial estimate has a lot of mth order curvature (large mth

derivative). Hence the resulting estimator is able to have more curvature where it

needs to without being over-penalized.

One potential disadvantage to the solution of (3) is that the resulting f̂ is forced

to have mth order inflection points at exactly the same locations as in the initial

estimate (i.e. f̂ (m)(x) = 0 whenever f̃ (m)(x) = 0). This may not be ideal since we

would like f̂ to be somewhat robust to the choice of initial estimate. To overcome

this issue, we now propose a general form for the Loco-Spline estimate. It is given by

the minimizer over f ∈ Sm of the quantity

arg min
f∈Sm

n∑
i=1

(yi − f(xi))
2 + τ

∫ 1

0

 f (m)(x)(∣∣∣f̃ (m)(x)
∣∣∣ + δ

)γ

2

dx (4)

for some constants δ ≥ 0 and γ ≥ 0. The δ parameter allows for the release of

the inflection restriction discussed above, while the γ parameter allows adjustment

of the amount of weight placed in the initial estimate. The solution to (4) can be

obtained in a fairly straight-forward manner using the reproducing kernel Hilbert

space (RKHS) approach discussed in Wahba (1990) and Pintore et al. (2006). This

solution is presented along with other computational details in Section 4.

There are many possible options for initial estimator f̃ (m). We recommend tak-

ing the mth derivative of the traditional smoothing spline estimate which penalizes

the (m + 1)st derivative. This is contrast to penalizing the mth derivative as is done
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in Abramovich & Steinberg (1996). We propose the penalization on the (m + 1)st

derivative here because under certain conditions, this results in rate optimal estima-

tion of f
(m)
0 when f0 lies in Sm+1 (Rice & Rosenblatt 1983). In our experience, this

also seems to give much better (more stable and more precise) empirical results for

the ultimate estimation of f0 than penalization on the mth derivative. On the other

hand when f0 ∈ Sm but f (m+1) /∈ L2, then f̃ (m) may not be rate optimal for f
(m)
0 .

However even in this case, the overall procedure still produces an asymptotically rate

optimal estimator of f0 (see Section 3) and still gives good empirical performance in

our experience.

2.2 Extension to Multiple Predictors

With multiple predictors, other locally adaptive approaches either become compu-

tationally infeasible or suffer from the curse of dimensionality. Here we discuss the

extension of Loco-Spline to multiple predictor variables, then demonstrate the abil-

ity of the Loco-Spline to avoid both of these issues. We will focus on the additive

model for simplicity of presentation here. However, this framework described below

easily extends to functions of any interaction order we might wish to consider in the

SS-ANOVA decomposition.

To extend the problem to multiple predictors we need the following notation.

Assume there are p predictor variables. Let xj denote the value of the jth predictor,

j = 1, . . . , p, and x = (x1, x2, . . . , xp). It is assumed without loss of generality that x ∈

[0, 1]p. Then let xj,i be the ith observed value of the jth predictor variable, i = 1, . . . , n

and xi = (x1,i, x2,i, . . . , xp,i). Let Pm = {f :
∫ 1

0
f (v)(x)dx = 0, v = 0, . . . ,m−1} which

represent a certain type of periodic boundary constraints. Lastly, denote the space of

additive mth order Sobolev functions as F = Sm
1 ⊕ · · · ⊕ Sm

p = {1} ⊕ S̄m
1 ⊕ · · · ⊕ S̄m

p

where Sm
j is the mth order Sobolev space corresponding to the jth input variable,

{1} is the space of constant functions, and S̄m
j = Sm

j ∩ P1. Hence f ∈ F implies
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f = b0 + f1 + · · ·+ fp for some b0 ∈ < and fj ∈ S̄m
j , j = 1, . . . , p which are called the

functional components. Notice that the definition of S̄m
j implies that

∫ 1

0
fj(x)dx = 0

for each j so that b0 is identifiable.

The additive Loco-Spline estimator is now defined as

f̂ = arg min
f∈F

n∑
i=1

(yi − b0 −
p∑

i=1

fi(xj,i))
2 +

p∑
j=1

τj

∫ 1

0

 f
(m)
j (x)(∣∣∣f̃ (m)

j (x)
∣∣∣ + δj

)γj

2

dxj (5)

for initial estimates of f̃
(m)
j , j = 1, . . . , p and some user defined constants δj ≥ 0 and

γj ≥ 0 which play the same role as they did in the univariate case. Notice that the

formulation in (5) requires specification of p smoothing parameters, τj’s, one for each

predictor. As in the typical additive model, these can be chosen via back-fitting as

described in Section 4. Alternatively, one could use a common smoothing parameter

τj = τ for all j since the relative level of smoothness of the functional components is

adjusted via the initial estimates. We do not assume a common smoothing parameter

here however for two reasons: (i) The initial estimate, f̃ (m) is best chosen by allowing

for different smoothing parameters for each of the component curves so there would

be little gain in computational efficiency anyway and (ii) in many cases the additive

Loco-Spline performs better by allowing for different values for the γj’s. If not all of

the γj are equal, then the divisor is not on a comparable scale across components.

Hence a separate tuning parameter would be necessary for each component.

3 Asymptotic Properties

Here we give some general conditions for which locally adaptive smoothing spline

estimators in the additive model converge at the optimal rate for nonparametric

regression estimators. As a corollary, Loco-Spline achieves this asymptotically optimal

rate. To the best of our knowledge, this is the first result of its kind for a spatially

adaptive smoothing spline estimator. Proofs of the following results are deferred to
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Appendix A which is available as a supplemental document online.

Let the true regression function be in the space of additive mth order Sobolev

Space functions, f0 ∈ F = {1} ⊕ S̄m
1 ⊕ · · · ⊕ S̄m

p . Denote ‖g‖2
n = 1/n

∑n
i=1 g(xi)

2,

the squared norm of the vector obtained by evaluating the function g at the design

points. For two sequences an and bn, we also use the notation an
p∼ bn to indicate

an/bn = Op(1) and bn/an = Op(1).

Theorem 1. Let f̂ be given by the minimizer over f = b0 + f1 + · · ·+ fp ∈ F of the

quantity
∑n

i=1(yi−b0−
∑p

j=1 fj(xj,i))
2+

∑p
j=1

∫ 1

0
λj,n(x)(f

(m)
j (x))2dx. Suppose that for

each x ∈ [0, 1] the weight functions are such that maxx∈[0,1] λj,n(x) = Op(n
−2m/(2m+1))

and maxx∈[0,1] λ
−1
j,n(x) = Op(n

2m/(2m+1)) for each j = 1, ..., p. Then ||f̂ − f0||2n =

Op(n
−2m/(2m+1)).

Corollary 1. Let f̂ be given by the Loco-Spline estimate in (5) with 0 < δ < ∞ and

0 ≤ γ < ∞. Let 0 < M < ∞ and set f̃
(m)
j (x) = sign

(
f̄

(m)
j (x)

)
min

{∣∣∣f̄ (m)
j (x)

∣∣∣ , M
}

where f̄
(m)
j is the estimate given by the traditional smoothing spline by penalizing the

(m + 1)st derivative. If also τj,n
p∼ n−2m/(2m+1), then ||f̂ − f0||2n = Op(n

−2m/(2m+1)).

Remark 1: Proofs of Theorem 1 and Corollary 1 can be found in the supplemental

online document Appendix A. Corollary 1 implies that the Loco-Spline estimate

obtains the asymptotically optimal rate for MSE convergence. Thus there is no loss in

asymptotic rate of convergence when compared to the traditional additive smoothing

spline (Lin 2000). However, there can be a substantial improvement in finite sample

performance in some cases as seen in Section 5.

Remark 2: Note that the bound M on f̃
(m)
j in Corollary 1 is introduced to satisfy the

conditions on λj,n(x) in Theorem 1. This ensures that for g ∈ Sm∩Pm, then g = 0 if

and only if
∫ 1

0
[g(m)(x)/(|f̃ (m)

j (x)|+ δj)
γj ]2dx = 0. Thus, this quantity can be thought

of as a squared norm over the space Sm ∩ Pm (even in the limit as n → ∞) just as

the penalty for the traditional smoothing spline.
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Remark 3: In Corollary 1 we calculate an initial estimate f̄ by penalizing the (m+1)st

derivative. If f ∈ Sm+1, then the bound M would not be necessary because the

resulting estimate of the mth derivative, f̄ (m), would be bounded. So essentially, this

M is only to guard against pathological cases resulting when f ∈ Sm, but the mth

derivative of f is not bounded. Since we want the convergence rate to hold for any

f ∈ Sm, we need the extra condition involving M as a formality. In practice, M

is a very large constant to simply protect against a poor estimate in the described

pathological case. It is not really a truncation, in general, and in practice, M will

almost never come into play. We set M = 106 for example, to generate the results

for Section 5.

4 Computation

For ease of presentation, we first consider computation of the Loco-Spline estimate in

the univariate case. This lays the groundwork for the computation in the general case

which is discussed at the end of this section. The computation of the Loco-Spline

solution is expedited by the use of reproducing kernel Hilbert space (RKHS) theory.

We give a brief description of the concepts necessary for computation of the Loco-

Spline solution. For a more in depth review of RKHS, see Wahba (1990) or Berlinet

& Thomas-Agnan (2004).

4.1 RKHS solution

Recall that Pm = {f :
∫ 1

0
f (v)(x)dx = 0, v = 0, . . . ,m− 1}. Then Sm

0 = Sm ∩ Pm is

the space of functions in mth order Sobolev Space that satisfy the periodic boundary

conditions. To calculate the general solution of the univariate Loco-Spline problem

in (2), one simply needs the reproducing kernel (r.k.), Km,λ, for the RKHS consisting

of functions in Sm
0 with inner product

〈f, g〉λ =

∫ 1

0

λ(x)f (m)(x)g(m)(x)dx.
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The solution to (2) then has the form

f̂(x) =
m−1∑
j=0

bjBj(x) +
n∑

i=1

ciKm,λ(x, xi) (6)

for some b = (b0, . . . , bm−1)
′ and c = (c1, . . . , cn)′, where Bj is the jth Bernoulli

polynomial. Hence, f̂ can be obtained by simple matrix algebra after substituting

(6) into (2); see Wahba (1990) for example.

The r.k., Km,λ, for λ(x) > 0 and λ(x)−1 square integrable is

Km,λ(s, t) =

∫ 1

0

λ(u)−1Gm(s, u)Gm(t, u)du, (7)

where

Gm(s, t) =
1

m!
Bm(s) +

(−1)m−1

m!
Bm(|s− t|) (sign(t− s))m (8)

is the Green’s function for the differential equation f (m)(x) = g(x) with the periodic

boundary constraints described by Pm (Wahba 1995).

The r.k., Km,λ, for the general form in (4) does not have a convenient closed form

solution. However, one can numerically approximate the necessary integrals

Km,λ(s, t) =
1

τ

∫ 1

0

(∣∣∣f̃ (m)(u)
∣∣∣ + δ

)γ

Gm(s, u)Gm(t, u)du (9)

≈ 1

Nτ

N∑
k=1

(∣∣∣f̃ (m)(uk)
∣∣∣ + δ

)γ

Gm(s, uk)Gm(t, uk) (10)

for uk = (2k− 1)/(2N). We have found that N = 1000 is sufficient for most cases. A

Gauss quadrature could instead be used to numerically evaluate the integral, which

generally requires fewer quadrature points. In our experience, the required compu-

tation time for the overall procedure is very similar either way, however. The Gram

matrix, whose elements are the values of the kernel evaluated at the design points

K(xi, xj), i, j = 1, . . . , n, is all that is needed to obtain the b and c of (6). To evaluate

f̂ at new x-values, we simply need to approximate Km,λ(xnew, xi), i = 1, . . . , n in the

same manner for the new x values.
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The approximation in (10) requires that we know the derivative of f̃ at the quadra-

ture points uk. Fortunately, obtaining derivatives of f̃ , when it is the standard

(m + 1)st order smoothing spline, is a fairly simple process. The functional form

of the smoothing spline is given in Eq. (6). To obtain the derivative of the initial

estimate f̃ then, we just need to take the derivative of the r.k. Km,λ(s, t) with respect

to s. Derivatives of the r.k. for the standard (m + 1)st order smoothing spline are

fairly straight forward to evaluate analytically; see Wahba (1990) or Gu (2002) for

the form of this r.k.

4.2 Tuning Parameter Selection

There are two free parameters in the Loco-Spline procedure, namely the traditional

smoothing parameter, τ and the power given to the initial estimate of the mth deriva-

tive, γ. Assume for now that we fix γ, then τ can be chosen via conventional means

(GCV, m-fold CV, visually, etc.). Since the Loco-Spline procedure is not a linear

smoother, it is perhaps best to use a method such as m-fold CV to choose τ . One

could approximate the df of a nonlinear smoother as in Lin & Zhang (2006) and use

GCV or similar measures. This would be somewhat faster computationally, but we

have had better success with the 5-fold CV approach for this problem.

In our trials, we have found that the Loco-Spline estimate is not very sensitive to

the exact value of δ. It suffices to use δ = 0.05 maxx∈[0,1]{f̃ (m)(x)} to provide some

freedom in the exact placement of inflection points. As it turns out though, it is

helpful to more carefully consider the choice of γ. Although, this is much less crucial

than the choice of τ it has been observed by the authors that certain functions tend

to be better estimated with a larger value of γ. This is particularly true for functions

that are very rough in isolated areas, but very smooth otherwise; see Section 5.1 for

example. However, our experience also indicates that the choice of γ need not be all

that precise. We have found that allowing the options of γ = 1, 2, 4 provides ample
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flexibility for most cases. Hence the algorithm used in the examples of Section 5

essentially fits a Loco-Spline estimator three times (once for each possible γ value),

each time choosing τ via 5-fold CV. The final estimate uses the γ resulting in best

5-fold CV score. Thus, γ is technically a second tuning parameter in the manner it

is used here. However, one can always fix γ = 1 to have a procedure with truly one

tuning parameter which performs nearly as well in many cases.

4.3 Computation for the Additive Model

As in the univariate case, we set δj = 0.05 maxx∈[0,1]{f̃ (m)
j (x)} to allow for some

flexibility in the placement of inflection points in the final estimate. We will discuss

the selection of the τj and γj, but we first consider the solution for fixed tuning

parameters. In a similar fashion to the univariate problem, the solution to (5) has

the form

f̂(x) = b0 +

p∑
j=1

m−1∑
k=1

bj,kBk(xj) +
n∑

i=1

ciKτ ,f̃ (x, xi) (11)

for some b = (b0, . . . , bm−1)
′ and c = (c1, . . . , cn)′, where recall that Bk is the kth

Bernoulli polynomial, and

Kτ ,f̃ (s, t) =

p∑
j=1

1

τj

Kj(sj, tj)

where

Kj(s, t) =

∫ 1

0

|f̃ (m)
j (u) + δj|γjGm(s, u)Gm(t, u)du.

Hence f̂ can be obtained with simple linear algebra by substituting (11) into (5). The

functions Kj for each j = 1, . . . , p must be evaluated at all pairwise combinations of

the design points to obtain b and c. This can be done as in (10).

For a given initial estimate, the algorithm to compute the additive Loco-Spline

estimate including tuning parameter selection is given below. We discuss how to

obtain the initial estimate immediately afterwards.
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Algorithm 1.

1. Fix δj = 0.05 maxx∈[0,1]

∣∣∣f̃ (m)
j (x)

∣∣∣
2. Temporarily fix each τj = 1000 and γj = 0 for all j.

3. for j = 1, . . . , p

(a) Keep all τk and γk fixed unless k = j.

(b) For γj = {1, 2, 4}, find the τj to minimize 5-fold CV score. This can be
accomplished by solving (5) for each candidate value of log(τj) on a grid
for example.

(c) Set γj and τj at the values that minimized 5-fold CV score in the previous
step (b).

4. Fix γj at the value obtained in step 3 for the remainder of the algorithm.

5. Repeat step 3 (only adjusting τj’s) a fixed number K times or until some con-
vergence criterion is satisfied.

Notice that the three levels of γj only get cross validated over for the first back-fitting

iteration. This speeds up the overall algorithm considerably without much loss in

performance from what we have observed. Finally, the full algorithm to compute

Loco-Spline, including the initial estimate, is now given as

Algorithm 2.

1. Fit an initial additive model using the traditional smoothing spline penalizing
the (m + 1)st derivative. Specifically, use Algorithm 1 with (m + 1)st derivative
in (5) and γj = 0 for all j fixed in step 3(b) for the entire algorithm to obtain
f̃ .

2. Use Algorithm 1 with the f̃ obtained in step 1 to obtain the Loco-Spline estimate.

5 Example Results

In this section we evaluate the performance of Loco-Spline on several simulated data

sets and the benchmark motorcycle accident data used in Silverman (1985). We

compare the results to those from several other competing methods. The methods

included in these simulations are:
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LOCO - the Loco-Spline procedure of (4) with tuning parameter selection via 5-fold

CV as described in Section 4.2.

SAS(5) - the version of the spatially adaptive smoothing spline suggested in Pintore

et al. (2006) which uses piecwise constant (with 5 bins since this had the best

performance in their paper) for λ(x).

TRAD - the traditional smoothing spline (TRAD) with tuning parameter chosen

via 5-fold CV.

LOKERN - local kernel regression with plug-in local bandwidth as provided by the

R package lokern. This procedure uses a second order kernel with a plug-in

estimate of the asymptotically optimal local bandwidth.

MARS - Multivariate Adaptive Regression Splines (Friedman 1991) as provided by

the R package polymars. This procedure uses regression splines with spatially

adaptive knot placement.

Confidence intervals for f(x) are obtained for these examples by means of the

parametric “wild” bootstrap (Härdle 1990 and Davison & Hinkley 1997). It should

be noted that confidence intervals for f(x) could also be obtained by considering

the posterior distribution of f(x) from the equivalent Bayes model. Indeed, we can

think of Loco-Spline as a Bayes estimate where the prior on f is a non-stationary

Gaussian process with covariance given by Km,λ(s, t). This approach to calculating

confidence intervals is shown to have desirable properties for the traditional smoothing

spline (Nychka 1988). However, the Loco-Spline procedure makes heavy use of the

data in estimating the “prior“ covariance Km,λ(s, t). Hence this approach is likely to

yield overly optimistic confidence intervals which makes the bootstrap approach more

appropriate here.
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5.1 Mexican Hat Function

The first test problem which we call the Mexican hat function is a linear function

with a sharp Gaussian bump in the middle of the domain. Specifically the function

is given by

f(x) = −1 + 1.5x + 0.2φ0.02(x− 0.5)

where φσ(x−µ) is the N (µ, σ2) density evaluated at x. We generate a simple random

sample of size n from Xi
iid∼ Unif(0, 1), i = 1, . . . , n. We then generate Yi = f(Xi)+εi,

where εi
iid∼ N (0, 0.25). We consider three scenarios for the sample size, n = 100, 250,

and 500 to empirically observe the convergence of the methods.

Figure 1 displays the data along with the corresponding fits from Loco-Spline and

the traditional smoothing spline for a typical realization with n = 100. Here we see

that the Loco-Spline is able to both better capture the peak and stay smooth where

the function is flat. In order for the traditional smoothing spline to estimate the

peak reasonably well, the smoothing parameter needs to be small everywhere, hence

allowing for the undesirable behavior of “chasing” data points in the areas where the

true function is flat. Looking at the plot of the initial estimate of the second derivative

(bottom left panel), we see that Loco-spline will be imposing far less penalty in the

vicinity of the peak than in other regions. Hence the overall smoothing parameter

need not be nearly as small relatively and no chasing of the data points occurs.

Bootstrap confidence intervals are plotted as bands in the upper right panel of the

figure for the traditional smoothing spline and in the bottom right panel of the figure

for Loco-Spline. Clearly the smoother and narrower confidence bands produced by

Loco-Spline are preferable to those produced by TRAD.

In the top of Table 1 we can compare the performance on the Mexican hat example

for these methods as sample size increases. The reported summary statistics are

the average mean squared error (AMSE) and the percent best. The AMSE is the

average of the MSE over 100 realizations at the respective sample sizes. Here we
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are using the definition of MSE which averages squared errors at the data points,

i.e. MSE = 1/n
∑n

i=1(f(xi) − f̂(xi))
2. The percent best is the percentage of the

100 realizations that a given method had the smallest MSE among the competing

methods.

In the Mexican hat section of the table it is quite evident that Loco-Spline is

superior to the other approaches for all sample sizes on this example. Notice that, as

sample size increases, the AMSE appears to be converging to zero at roughly the same

rate for LOCO, TRAD and LOKERN, as predicted by their corresponding theoretical

results. However, Loco-Spline maintains a smaller AMSE than the other methods at

all sample sizes. In addition, Loco-Spline had the smallest MSE for roughly 80% of

the realizations for each sample size.

5.2 Dampened Harmonic Motion

The next test problem is a dampened harmonic motion also known as the spring equa-

tion. Functions with this type of behavior are common to just about any structural

engineering problem. The spring equation is given by

f(x) = a exp{−bx} cos(ωx).

We have chosen the parameter values of a = 1, b = 7.5, ω = 10π to produce the

data for this simulation. We again consider Xi
iid∼ Unif(0, 1), i = 1, . . . , n with Yi =

f(Xi) + εi, but here εi
iid∼ N (0, 0.05).

Figure 2 displays the data and the corresponding fits from Loco-Spline and the

traditional smoothing spline for a typical realization with n = 100. Both the tradi-

tional smoothing spline and Loco-Spline capture the higher amplitude oscillation on

the left third of the domain rather well. However, the traditional smoothing spline

estimate is somewhat rough for x > 0.4 while Loco-Spline stays very smooth like the

true function.

The second tier of Table 1 summarizes the performance on the dampened harmonic
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example for sample sizes n = 100, 250, and 500. In this example, there is not as much

difference between the three methods LOCO, SAS(5), and TRAD. Still, LOCO and

SAS(5) appear to be somewhat better than TRAD at all of the sample sizes. Even

though the performances of LOCO and SAS(5) are similar, SAS(5) has smaller MSE

in 75% of the realizations for n = 250 and n = 500.

5.3 Rapid Change Function

The rapid change function is defined as

f(x) = 1− 1

1 + exp{−10(x− 0.2)}
+

0.8

1 + exp{−75(x− 0.8)}

We once again consider Xi
iid∼ Unif(0, 1) with Yi = f(Xi) + εi and εi

iid∼ N (0, 0.05).

Figure 3 displays the data and the corresponding fits from Loco-Spline and the tra-

ditional smoothing spline for a typical realization with n = 100. Notice how rough

the smoothing spline is relative to the true function in regions away from the rapid

change region (x ≈ 0.8). Loco-Spline on the other hand is able to fit the true function

just as well in the rapid change region while still producing a smooth and accurate

estimate in the other regions.

Tier three of Table 1 summarizes the results of the simulations from this example.

This example is more similar to the first example in that LOCO has a distinctly lower

AMSE than the other methods at all of the sample sizes. LOCO has the smallest

MSE in 68%, 80%, and 83% of the realizations at the three sample sizes n = 100,

250, and 500, respectively.

5.4 Computational Time

Here we consider the average CPU time required to fit each of the five methods

considered in Sections 5.1-5.3. Figure 4 displays these CPU times versus sample

size for each of the five methods. Notice that the computational cost to fit MARS
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and LOKERN is small relative to the other methods, but they also gave poorer

performance in terms of estimation. The Loco-spline procedure takes substantially

longer than the MARS, LOKERN, or TRAD methods to fit, but it also gave much

better estimation accuracy in the simulations. The Loco-spline procedure also takes

much less time to fit than the SAS(5) procedure of Pintore et al. (2006).

5.5 Motorcycle Crash Dataset

Here we take a look at a real data set that benefits from our local approach to

smoothing. This data comes from a computer simulation of motorcycle accidents. The

response is a series of measurements of head acceleration over time in a simulated

motorcycle accident used to test crash helmets. This benchmark example dataset

made popular by Silverman (1985) is available as mcycle in the R library MASS.

Figure 5 shows the estimated curves and confidence bands from TRAD and Loco-

Spline respectively. Notice how Loco-Spline appears to have better agreement with

the data at the three change points (13 sec, 22 sec, and 30 sec respectively), in that it

captures the abrupt change without oversmoothing across the change points. On the

other hand, Loco-Spline still maintains a very smooth nature between change points.

This is particularly evident in the second half of the domain (30-60 sec). The TRAD

estimate bounces around some in this region while Loco-Spline remains very smooth

which seems to give a much more visually appealing fit to the data.

On performing a 10-fold CV of this data the CV scores for Loco-Spline, SAS(5),

TRAD, LOKERN, and MARS are 535.9, 540.2, 544.3, 556.3, and 589.2, respectively.

Hence Loco-Spline gives a much more visually appealing fit to this data set than

TRAD and also has the lowest out of sample prediction error.

5.6 Additive Model Example

In this example we consider estimation of the following additive model,
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f(x) = f1(x1) + f2(x2) + f3(x3) + f4(x4) + f5(x5)

where

f1(x1) = 2x1

f2(x2) = −1 + 1.5x + 0.2φ0.02(x− 0.5)

f3(x3) = exp{−7.5x} cos(10πx)

f4(x4) = 1− 1

1 + exp{−10(x− 0.2)}
+

0.8

1 + exp{−75(x− 0.8)}
f5(x5) = 0

We generate a sample X i = (X1,i, . . . , X5,i), i = 1, . . . , 100 uniform on the unit cube,

[0, 1]5 and Yi = f(X i) + εi, where εi
iid∼ N (0, 0.125). Notice that f1 and f5 are

very smooth functions where f2, f3, and f4 are the functions with locally varying

smoothness used as univariate examples in Sections 5.1 - 5.3. Figure 6 displays the

data from a typical realization of this model along with the true components curves

for the five predictor variables.

Figure 7 shows the true curves for the first four functional components along with

the estimated curves from the traditional GAM model (Hastie & Tibshirani 1990) and

the additive Loco-Spline model. The GAM estimate was produced using Algorithm 1

with m = 2 and γj = 0 for all j fixed in step 3(b) for the entire procedure. Loco-Spline

estimates were produced using Algorithm 2 with m = 2. It can be seen here that both

procedures do well to fit the functional components in regions where there is a lot

of signal. However, the Loco-Spline estimate is much smoother in the regions of the

domain where the true function is smooth. This is particularly true for f2 and f4. In

addition, since Loco-Spline is capable of estimating the more complicated functions

more precisely, it has a clearer picture of the remaining noise and can disregard noise

variables like x5. This can be seen in the bottom right panel of Figure 7 where Loco-

spline correctly estimates f5 to be nearly 0. GAM on the other hand picks up a

substantial amount of spurious signal across x5.
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The last tier of Table 1 shows the summary of the MSE performance for Loco-

Spline, GAM, and MARS on 100 realizations from this additive model. The other

two methods (SAS(5) and LOKERN) were not used because they are not as readily

extendable to the additive model due to speed and/or implementation concerns. It

is quite clear that Loco-Spline is a much better procedure than the traditional GAM

model for this example. Loco-Spline has AMSE=9.2, while GAM has AMSE=12.3

for the n = 100 case. MARS is again not competitive with the smoothing spline type

procedures. Loco-Spline also had smaller MSE on 85 out of the 100 realizations. As

sample size increases, the advantage of Loco-Spline is even more evident as it has

universally better MSE in all of the realizations from n = 250 and n = 500.

6 Conclusions & Further Work

In this article, we have developed the Loco-Spline, a new regularization method which

allows for a locally varying smoothness of the resulting estimate. We have demon-

strated a favorable performance of this approach against several existing methods.

The Loco-Spline method is then extended to additive models in multi-dimensional

problems via SS-ANOVA, and compares favorably again to the traditional GAM

model and MARS. It was also shown that even with the added flexibility to allow for

better small sample performance, the Loco-Spline still achieves the asymptotically

optimal rate of MSE convergence. R code to fit Loco-Spline models is included with

the Supplemental Materials for this article which are available online.

There are certainly other questions and advancements still to be made with locally

adaptive smoothing splines. For example many problems require treatment of two

way (or higher) order interactions and/or variable selection. Also, a more detailed

investigation of the first order term in the asymptotic MSE, perhaps by deriving

the equivalent kernel would be useful. This could help make clear when advantage

is gained over the traditional smoothing spline and give some insight into choice of
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tuning parameters.
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Supplemental Materials

Appendix: Proofs of the results given in Section 3. (pdf file)

R-code to fit Loco-spline models: R-code containing a function called loco.spline

to fit the additive Loco-spline model described in this paper. The tar file

also contains two files with sample code used to generate the results of Sec-

tions 5.1 and 5.6, respectively. (GNU zipped tar file)
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n = 100 n = 250 n = 500

AMSE % Best AMSE % Best AMSE % Best

Mexican Hat

LOCO 11.16 (0.66) 78.0 4.74 (0.28) 83.0 2.44 (0.10) 79.0

SAS(5) 15.38 (0.60) 14.0 6.43 (0.22) 15.0 3.23 (0.10) 21.0

TRAD 20.88 (0.53) 1.0 9.46 (0.19) 2.0 5.25 (0.10) 0.0

LOKERN 19.25 (0.53) 5.0 10.11 (0.21) 0.0 5.63 (0.12) 0.0

MARS 60.01 (3.88) 2.0 61.56 (3.92) 0.0 52.24 (3.30) 0.0

Dampened Harmonic

LOCO 0.57 (0.02) 31.0 0.23 (0.01) 22.0 0.13 (0.00) 23.0

SAS(5) 0.54 (0.03) 58.0 0.20 (0.01) 75.0 0.11 (0.00) 75.0

TRAD 0.60 (0.02) 8.0 0.26 (0.01) 3.0 0.15 (0.00) 2.0

LOKERN 0.78 (0.03) 3.0 0.34 (0.01) 0.0 0.19 (0.00) 0.0

MARS 1.88 (0.21) 0.0 1.51 (0.17) 0.0 0.92 (0.07) 0.0

Rapid Change

LOCO 0.42 (0.02) 68.0 0.18 (0.01) 80.0 0.10 (0.00) 83.0

SAS(5) 0.53 (0.02) 14.0 0.23 (0.01) 12.0 0.12 (0.00) 12.0

TRAD 0.54 (0.02) 3.0 0.26 (0.01) 1.0 0.14 (0.00) 1.0

LOKERN 0.59 (0.02) 4.0 0.29 (0.01) 1.0 0.16 (0.00) 0.0

MARS 0.71 (0.03) 9.0 0.39 (0.02) 5.0 0.25 (0.01) 4.0

Additive Function

LOCO 9.20 (0.48) 85.0 3.72 (0.09) 99.0 2.17 (0.09) 97.6

GAM 12.26 (0.29) 15.0 5.71 (0.10) 1.0 3.09 (0.08) 2.4

MARS 86.49 (4.61) 0.0 85.64 (5.53) 0.0 72.83 (8.97) 0.0

Table 1: Results of 100 Realizations from each of the examples models: Mexihat,
Dampened Harmonic, Rapid Change, and Additive Function. AMSE is the mean
square error averaged over the 100 realizations; standard error in parentheses. The
percentage of the realizations that a particular method had the smallest MSE among
the other methods is given as % Best.
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Figure 1: Upper left: Data generated from the Mexican hat function with n = 100
along with the true function. Upper middle: The traditional smoothing spline esti-
mate (solid) with the true function (dashed). Upper right: 95% bootstrap confidence
bands obtained from the traditional smoothing spline (solid) with the true function
(dashed). Lower left: The curvature of the initial estimate (obtained using m = 3)
used to weight the smoothing parameter. Lower middle: The Loco-spline estimate
(solid) with the true function (dashed). Lower right: 95% bootstrap confidence bands
obtained from the Loco-Spline procedure (solid) with the true function (dashed).
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Figure 2: Upper left: Data generated from the dampened harmonic function with
n = 100 along with the true function. Upper middle: The traditional smoothing
spline estimate (solid) with the true function (dashed). Upper right: 95% bootstrap
confidence bands obtained from the traditional smoothing spline (solid) with the true
function (dashed). Lower left: The curvature of the initial estimate (obtained using
m = 3) used to weight the smoothing parameter. Lower middle: The Loco-spline
estimate (solid) with the true function (dashed). Lower right: 95% bootstrap confi-
dence bands obtained from the Loco-Spline procedure (solid) with the true function
(dashed).
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Figure 3: Upper left: Data generated from the rapid change function with n = 100
along with the true function. Upper middle: The traditional smoothing spline esti-
mate (solid) with the true function (dashed). Upper right: 95% bootstrap confidence
bands obtained from the traditional smoothing spline (solid) with the true function
(dashed). Lower left: The curvature of the initial estimate (obtained using m = 3)
used to weight the smoothing parameter. Lower middle: The Loco-spline estimate
(solid) with the true function (dashed). Lower right: 95% bootstrap confidence bands
obtained from the Loco-Spline procedure (solid) with the true function (dashed).
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Figure 4: Left: Average CPU time (averaged over the simulations from Sections 5.1-
5.3) required to fit a given estimator for a given sample size. Right: Same as left pane
only with Log of Average CPU time.
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Figure 5: Left: Motorcycle crash data along with the estimate given by TRAD
(dashed) and 95% bootstrap confidence bands (solid). Right: Motorcycle crash data
along with the estimate given by Loco-Spline (dashed) and 95% bootstrap confidence
bands (solid).
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Figure 6: Scatter plots of the data generated from the additive model example across
each of the five inputs. The true functional component curves are superimposed.
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Figure 7: Plot of the true functional component curves (dashed) for the additive
model along with the estimates for each component function given by GAM (grey)
and the proposed Loco-spline (solid).
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Appendix A: Proofs

The proof of Theorem 1 uses Lemma 1 below which is a generalization of Theorem

10.2 of (van de Geer 2000). Consider the regression model yi = g0(xi)+εi, i = 1, . . . , n

where g0 is known to lie in a class of functions G, xi’s are given covariates in [0, 1]p,

and εi’s are iid N (0, σ2). Let In : G → [0,∞) be a pseudonorm on G. Define

ĝn = arg ming∈G 1/n
∑n

i=1(yi − g(xi))
2 + ρ2

nI
v

n (g). Let H∞(δ,G) be the δ-entropy of

the function class G under the supremum norm ‖g‖∞ = supx |g(x)|; see (van de Geer

2000), page 17.

Lemma 1. Suppose there exists I∗ such that I∗(g) ≤ In(g) for all g ∈ G, n ≥ 1. Also

assume that there exists constants A > 0 and 0 < α < 2 such that

H∞

(
δ,

{
g − g0

I∗(g) + I∗(g0)
: g ∈ G, I∗(g) + I∗(g0) > 0

})
≤ Aδ−α (A.1)

for all δ > 0 and n ≥ 1. Then if v > 2α/(2 + α), I∗(g0) > 0, and ρ−1
n =

Op

(
n1/(2+α)

)
I

(2v−2α+vα)/(4+2α)
n (g0), we have ‖ĝn − g0‖2 = Op(ρ

2
n)I

v/2
n (g0). Moreover,

if In(g0) = 0 for all n ≥ 1 then ‖ĝn − g0‖2 = Op(n
−v/(2v−2α+vα))ρ

−2α/(2v−2α+vα)
n .

Proof. This follows the same logic as the proof of Theorem 10.2 of van de Geer (2000),

1



so we have intentionally made the following argument somewhat terse. Notice that

‖ĝn − g0‖2
n + ρ2

nI
v

n (ĝn) ≤ 2 〈ε, ĝn − g0〉n + ρ2
nI

v
n (g0) (A.2)

where 〈ε, ĝn − g0〉n =
∑n

i=1 εi (ĝn(xi)− g0(xi)). Also, condition (A.1) along with

Lemma 8.4 in van de Geer guarantees that

sup
g∈G

| 〈ε, ĝn − g0〉n |
‖ĝn − g0‖1−α/2

n (I∗(g) + I∗(g0))α/2
= Op(n

−1/2). (A.3)

Case (i) Suppose that I∗(ĝn) > I∗(g0). Then by (A.2) and (A.3) we have

‖ĝn − g0‖2
n + ρ2

nI
v

n (ĝn) ≤ Op(n
−1/2)‖ĝn − g0‖1−α/2

n Iα/2
∗ (ĝn) + ρ2

nI
v

n (g0)

≤ Op(n
−1/2)‖ĝn − g0‖1−α/2

n Iα/2
n (ĝn) + ρ2

nI
v

n (g0).

The rest of the argument is identical to that on page 170 of van de Geer.

Case (ii) Suppose that I∗(ĝn) ≤ I∗(g0) and I∗(g0) > 0. By (A.2) and (A.3) we have

‖ĝn − g0‖2
n ≤ Op(n

−1/2)‖ĝn − g0‖1−α/2
n Iα/2

∗ (g0) + ρ2
nI

v
n (g0)

≤ Op(n
−1/2)‖ĝn − g0‖1−α/2

n Iα/2
n (g0) + ρ2

nI
v

n (g0).

The remainder of this case is identical to that on page 170 of van de Geer.

Proof of Theorem 1. Any function f(x) = f1(x1) + · · · + fp(xp) with each fj ∈ Sm

can be written as f(x) = g1(x)+ g2(x). The function g1(x) = α0 +
∑p

j=1

∑m−1
k=1 αjkx

k
j

is a parametric additive polynomial part. While g2(x) ∈ G, with

G =

{
g2(x) = f̄1(x1) + · · ·+ f̄p(xp) : f̄j ∈ Sm,

n∑
i=1

f̄j(xij)xk
il = 0 for k = 0, . . . ,m− 1 and j, l = 1, . . . , p

}
.

This ensures that g2(x) is orthogonal to g1(x) under the empirical dot product,

〈f, g〉 = 1/n
∑n

i=1 f(xi)g(xi). Hence ||f̂ − f0||2n = ||ĝ1 − g10||2n + ||ĝ2 − g20||2n. Due to

the orthogonality, and that the coefficients on the polynomial terms are unpenalized,

it follows that ||ĝ1 − g10||2n converges with rate n−1.

Now, rewrite the penalty term as ρ2
n

∑p
j=1

∫ 1

0
λ̃j,n(x)(f̄

(m)
j (x))2dx, where ρ2

n =

min{λj,n(x) : x ∈ [0, 1], j = 1, . . . , p} and λ̃j,n(x) = λj,n(x)/ρ2
n. The problem is

2



now reduced to showing that the conditions of Lemma 1 hold for the function space

G with In(g) =
(∑p

j=1

∫ 1

0
λ̃j,n(x)(f̄

(m)
j (x))2dx

)1/2

, v = 2, and ρ2
n. Notice that by

the conditions of Theorem 1 we have ρ2
n

p∼ n−2m/(2m+1) and In(g) = Op(1). Also

notice that λ̃j,n(x) ≥ 1 for all n ≥ 1, j = 1, ..., p, and x ∈ [0, 1]. This implies that

In(g) ≥ I∗(g) =
∑p

j=1

∫ 1

0
(f̄

(m)
j (x))2dx for all g ∈ G and n ≥ 1.

Now the entropy bound in (A.1) holds whenever

H∞(δ, {g ∈ G : I∗(g) ≤ 1}) ≤ Aδ−α, (A.4)

since I∗(g − g0) ≤ I∗(g) + I∗(g0) so that the set in brackets in (A.4) contains that in

(A.1).

Note that G is a subset of
⊕p

j=1 Gj, where Gj is the space for univariate functions

after removal of the polynomial in the variable xj only. Now, for the supremum norm,

if for each Gj, subject to I2
∗ (f̄j) =

∫ 1

0
(f̄

(m)
j (x))2dx ≤ 1 can be covered with N balls

with radius δ. Then
⊕p

j=1 Gj, such that I2
∗ (g) ≤ 1 can be covered with Np balls of

size pδ.

Finally, it is known (see for example, van de Geer 2000) that H∞(δ, {g ∈ Gj :

I∗(g) ≤ 1}) ≤ Aδ−1/m. Therefore H∞(pδ, {g ∈ G : I∗(g) ≤ 1}) ≤ Apδ−1/m. So it

follows that H∞(δ, {g ∈ G : I∗(g) ≤ 1}) ≤ Ap1+ 1
m δ−1/m. So that the Lemma holds

with α = 1/m.

Proof of Corollary 1. For the Loco-spline, we have that λj,n(x) = τj

(∣∣∣f̃ (m)
j (x)

∣∣∣γj

+ δj

)−2

with τj
p∼ n−2m/(2m+1). By its construction

(∣∣∣f̃ (m)
j (x)

∣∣∣γj

+ δj

)−2 p∼ 1 so the conditions

of Theorem 1 are satisfied.
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